¿Son los números interesantes?
De ahí que el 1729 sea conocido como el nº de Hardy-Ramanujan.
Para demostrar esto, hagamos una partición en dos subconjuntos de los números naturales, interesantes y aburridos. Tomando una muestra de estos números por ejemplo, del 1 al 7, tenemos que:
-En un principio suponemos que todos los números son aburridos.
-Analizando observamos que el 1 es el menor de todos ellos, por lo que tiene la propiedad de ser el menor de los números aburridos, una característica interesante que nos obliga a sacarlo de tal grupo e introducirlo en el subconjunto de los interesantes.
-Ahora habrá un nuevo número menor y así sucesivamente hasta que solo nos que de el 7.
-Sin embargo el 7 tiene la interesantísima propiedad de ser el único número no interesante, lo que hace que tengamos que incluirlo en el grupo de los interesantes.
De esta forma el subconjunto de los numeros aburridos será un subconjunto vacío, trantándose pues de una contradicción. Esto demuestra que nuestra suposición era falsa.
Evidentemente esta paradoja es más humorística que científica, pero a mi me ha servido para demostraros que el 7 es un número tan interesante como cualquier otro y evitar así posibles preguntas cómo, ¿Y a que viene eso del nº7?
Sigue leyéndome y descubrirás mucho más acerca de este número.
Para mi el número 7 es especial, pues en mi familia desde que nació mi madre hasta que lo hice yo han ido naciendo niños cada siete años.
ResponderEliminar